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A B S T R A C T   

Abundance indices derived from fisheries-dependent data (catch-per-unit-effort or CPUE) are known to have 
potential for bias, in part because of the usual non-random nature of fisheries spatial distributions. However, 
given the cost and lack of availability of fisheries-independent surveys, fisheries-dependent CPUE remains a 
common and informative input to fisheries stock assessments. Recent research efforts have focused on the 
development of spatiotemporal delta-generalized linear mixed models (GLMMs) which simultaneously stan-
dardize the CPUE and predict abundance in unfished areas when estimating the abundance index. These models 
can include local seasonal environmental covariates (e.g. sea surface temperature) and a spatially varying 
response to regional annual indices (e.g. the El Niño Southern Oscillation) to interpolate into unfished areas. 
Spatiotemporal delta-GLMMs have been demonstrated in simulation studies to perform better than conventional, 
non-spatial delta-generalized linear models (GLMs). However, spatiotemporal delta-GLMMs have rarely been 
evaluated in situations where fisheries spatial sampling patterns change over time (e.g. fisheries expansion or 
spatial closures). This study develops a simulation framework to evaluate 1) how the nature of fisheries- 
dependent spatial sampling patterns may bias estimated abundance indices, 2) how shifts in spatial sampling 
over time impact our ability to estimate temporal changes in catchability, and 3) how including seasonal 
environmental covariates and/or regional annual indices in spatiotemporal delta-GLMMs can improve the 
estimation of abundance indices given shifts in spatial sampling. Spatiotemporal delta-GLMMs are then applied 
to a case study example where the spatial sampling pattern changed dramatically over time (contraction of the 
Japanese pole-and-line fishery for skipjack tuna Katsuwonus pelamis in the western and central Pacific Ocean). 
Results from simulations indicate that spatial sampling in proportion to the underlying biomass can produce 
similar abundance indices to those produced under random sampling. Though estimated abundance indices were 
not perfect, spatiotemporal GLMMs were generally able to disentangle shifts in spatial sampling from temporal 
changes in catchability when shifts in spatial sampling were not too extreme. Lastly, the inclusion of seasonal 
environmental covariates and/or regional oceanographic indices in spatiotemporal GLMMs did not improve 
abundance index estimation and in some cases resulted in degraded model performance.   
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1. Introduction 

Abundance indices derived from fisheries-dependent catch-per-unit- 
effort (CPUE) remain a common and informative input to fisheries stock 
assessment models. Despite the known potential for bias, these indices 
are often assumed to be directly proportional to abundance and provide 
information to the model on population trend. These biases can arise 
from the usual non-random nature of the spatiotemporal distribution of 
fishers relative to that of fish populations (“preferential sampling”; Clark 
and Mangel, 1979; Rose and Leggett, 1991; Rose and Kulka, 1999; Swain 
and Sinclair, 1994), gear effects (“saturation of the gear”; Deriso and 
Parma, 1987), and/or systemic and structural changes to the fishing 
fleets over time (“effort creep”; Bishop et al., 2004; Ye and Dennis, 
2009). 

While fisheries-independent data usually come from statistically 
designed surveys that ensure the random distribution of samples relative 
to the fish populations, typically defined using a spatial sampling frame 
(Cochran, 1977; Kotwicki and Ono, 2019), the same assumption of 
appropriate spatiotemporal coverage cannot be made for 
fisheries-dependent data. Spatiotemporal “holes” or unfished areas in 
fisheries-dependent data coverage can arise from sampling preferen-
tially with respect to fish abundance (Pennino et al., 2019), changes in 
spatial targeting due to economic or management factors driving fishing 
preferences (Quirijns et al., 2008), or avoidance of target and/or bycatch 
species (e.g. fisheries under quota management systems; Branch and 
Hilborn, 2008), as well as restricted access to fishing grounds due to 
regulatory or competitive forces (Wilen, 2004). These anomalies in 
spatiotemporal sampling could lead to a disconnect between the un-
derlying species abundance trend and the trend estimated from 
fisheries-dependent CPUE data, thus providing a biased abundance 
index. Despite these potential deficiencies and biases, the high-cost and 
logistical challenges associated with implementing 
fisheries-independent surveys (Dennis et al., 2015) means that in some 
cases fisheries-dependent data are the only data available from which to 
construct relative abundance indices for fisheries stock assessments. 
Given the risk that fisheries-dependent CPUE can deviate from a pro-
portional relationship with abundance (Harley et al., 2001), consider-
able research (Campbell, 2004, 2015; Walter et al., 2014a; Grüss et al., 
2019; Zhou et al., 2019) has been directed at appropriately standard-
izing out the aforementioned sources of bias. 

The delta-generalized linear model (GLM) is one of the traditional 
fishery-dependent CPUE standardization approaches. It relies on a two- 
stage approach to model the probability of encounter and positive catch- 
rate of the species of interest (Lo et al., 1992). Covariates are typically 
included in these delta-GLMs to account for changes in catchability (e.g. 
the effects of fishing gear, environmental and/or spatial differences 
between fishing grounds) resulting in a standardized relative abundance 
index (Campbell, 2004). Given that fish and fishers are not distributed 
homogeneously or randomly across the landscape, research de-
velopments have focused on improving delta-GLM CPUE standardiza-
tion in order to produce abundance indices that are more robust to the 
spatiotemporal patchiness of the underlying data. This has involved 
either appropriately weighting spatial strata and observations in the 
construction of indices (Campbell, 2015) or accounting for unobserved 
spatiotemporal strata through imputation (Walters, 2003; Carruthers 
et al., 2011). Traditional delta-GLM approaches do not explicitly ac-
count for the spatial autocorrelation (spatial structure) in observations 
or formally incorporate imputation into the modeling process. However, 
the advice to impute CPUE in unsampled strata and/or to weight data 
based on strata area acknowledges the need to predict densities across 
the stock domain and weight indices based on areas (called “area 
weighting”). 

More recently, spatiotemporal methods implemented as delta- 
generalized linear mixed models (GLMMs) have seen greater use in 
fisheries-dependent CPUE standardization (Walter et al., 2014b; Thor-
son et al., 2015; Cao et al., 2017; Grüss et al., 2019), including in 

fisheries exploiting highly migratory species such as tunas (Xu et al., 
2019; Ducharme-Barth and Vincent, 2020). Spatiotemporal GLMM ap-
proaches allow models to explicitly account for the spatial autocorre-
lation in observations and leverage the geostatistical principal that “near 
things are more related than distant things” (Tobler, 1970). Expanding 
on this idea, spatiotemporal models account for both spatial autocor-
relation that is stable over time (“spatial variation”) and spatial auto-
correlation that changes among time steps (“spatiotemporal variation”) 
(Thorson, 2019a). Additionally, the ability to directly incorporate 
imputation within the statistical model via estimated correlation struc-
tures or covariate relationships can improve predictions of density in 
unfished areas and help account for distributional shifts in spatial 
sampling (Thorson et al., 2020b). 

Despite the aforementioned advantages associated with spatiotem-
poral models, there are additional complexities to consider relative to 
traditional methods of CPUE standardization. For example, spatiotem-
poral models are typically fit under the implicit assumption that the 
process for determining whether a location is sampled is statistically 
independent of the response at that location. When this assumption is 
met, then sampling location is “ignorable” and estimation can proceed 
as usual by specifying the probability of data conditional upon cova-
riates and assumed model structure. However, instances when the 
probability of sampling is dependent upon the response at each location 
are called “preferential sampling” and these instances can result in 
biased abundance indices (Diggle et al., 2010; Conn et al., 2017; Pennino 
et al., 2019; Rufener et al., 2021). This bias is intuitive; for example, 
increased sampling in high abundance areas due to fisher targeting is 
assumed to cause a positive bias in observed CPUE relative to the 
average CPUE that would arise under random sampling (Wilberg et al., 
2009). 

Spatiotemporal GLMM models have also been shown to generally 
outperform conventional delta-GLMs and other CPUE standardization 
approaches in comparative simulation tests (Grüss et al., 2019; Zhou 
et al., 2019). However, beyond the limited fisheries-dependent simula-
tion testing work already conducted (Grüss et al., 2019; Zhou et al., 
2019), there exists a critical need to test these spatiotemporal methods 
in the cases where conventional geostatistical assumption of uniform or 
random sampling is violated (Diggle et al., 2010) such as when the 
spatial sampling coverage of fisheries changes over time. Furthermore, 
theory suggests that the bias resulting from preferential sampling will 
increase as a function of the variance of the residual spatial or spatio-
temporal process being modeled (Conn et al., 2017). Therefore, one 
potential way to mitigate this bias is by including environmental cova-
riates that can explain variation in CPUE, and thereby decrease the 
spatial variance of residuals. We therefore see a need to explore the 
potential for environmental covariates to mitigate bias resulting from 
preferential sampling. 

The skipjack tuna (Katsuwonus pelamis) fishery is the largest in catch 
volume in the Western and Central Pacific Fisheries Commission 
(WCPFC) convention area (Williams et al., 2020). Historically, catches 
predominantly came from a broadly distributed pole-and-line fishery, of 
which the Japanese distant-water (DW) and offshore (OS) fleets were the 
primary components. In recent decades, catches from the Japanese 
pole-and-line (JPPL) fishery have declined and the fishery has con-
tracted westwards across the Pacific (Kinoshita et al., 2019), and the 
current prevailing method of capture is via purse seine. 

Standardized fisheries-dependent CPUE indices are an important 
input for the WCPFC skipjack tuna stock assessment (Vincent et al., 
2019). Standardizing CPUE indices for the purse seine sector is chal-
lenging due to potential changes in catchability over time (Vidal et al., 
2019a, 2020) and limitations in geographical scope (Vidal et al., 2019b). 
Given the historical distribution of the Japanese Pole-and-Line (JPPL) 
fishery (Ogura and Shono, 1999a) and the record of detailed change in 
vessel and gear configuration (Kiyofuji, 2013), the standardized CPUE 
index from this fishery has been used to provide relative abundance 
inputs for WCPFC skipjack tuna assessments (Ogura and Shono, 1999b; 
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Langley et al., 2010; Kiyofuji et al., 2011; Kiyofuji, 2016; Kinoshita et al., 
2019). However, given the recent reduction in JPPL fishing magnitude 
and distribution, it is important to evaluate the further utility of this 
index for the WCPFC skipjack tuna stock assessment and the potential to 
account for this change in spatial sampling by using spatiotemporal 
delta-GLMMs. 

The present study seeks to evaluate three questions in a simulation 
framework. First, it tries to understand how the nature of fisheries 
spatial sampling patterns may bias estimated abundance indices. Sec-
ond, it seeks to determine whether shifts over time in the spatial dis-
tribution of the fishery may impact our ability to estimate temporal 
changes in catchability. Thirdly, it evaluates whether including a sea-
sonal environmental covariate (sea surface temperature; SST) and/or a 
regional annual index (such as the Southern Oscillation Index) in the 
formulation of a spatiotemporal delta-GLMM can improve the estima-
tion of abundance indices under shifts in fisheries spatial sampling. 
Moreover, this study applies CPUE standardization methods using a 
spatiotemporal delta-GLMM to a real-world application where spatial 
sampling has changed over time, namely the JPPL fishery for skipjack 
tuna in the western and central Pacific Ocean (WCPO). 

2. Methods 

2.1. Simulation 

The simulation framework is broken into three main components: an 
observation model, an estimation model, and model evaluation. The 
observation model is described further in Section 2.1.1 which outlines 
how data are generated under six different spatial sampling scenarios, as 
well as in Section 2.1.2 which explains the two different catchability 
scenarios considered. The spatiotemporal delta-GLMM estimation 
model employed to estimate abundance indices from the simulated data 
is described in Section 2.1.4. A description of the metrics used to eval-
uate the performance of abundance indices calculated from the different 
combinations of observation and estimation models is provided in Sec-
tion 2.1.5. Finally, two additional experiments exploring the robustness 
of results to assumptions in the definition of sampling scenarios are 
described in Section 2.1.3. The R code utilized to conduct the simulation 
is accessible at the following GitHub repository: https://github.com/ 
N-DucharmeBarth/spatial.sampling.sim.manuscript. 

2.1.1. Spatial sampling patterns 
The simulation used a biomass field for adult skipjack from the 

Spatial Ecosystem and Populations Dynamics Model (SEAPODYM1) 
(Lehodey et al., 2008; Senina et al., 2020) to generate the base biomass 
distribution of adult skipjack tuna Sx,t from 1979 to 2008, where x de-
notes a cell of 1∘ spatial resolution and t denotes the quarterly time step. 
The spatial frame of the simulation covers the spatial extent of the 
WCPFC stock assessment boundaries for skipjack tuna from 102∘ E to 
210∘ E longitude and from 20∘ S to 50∘ N latitude (Vincent et al., 2019). 
SEAPODYM model output is a smooth biomass field with positive 
non-zero abundance predicted for all 1∘ spatial cells (not including land). 

As fish distributions are known to be spatially patchy, areas of zero 
skipjack abundance were introduced. To account for this patchiness, Sx,t 
was converted to a simulated biomass field Ax,t by allowing each cell x 
and time t to be randomly set to zero according to a single random draw 
from a multinomial distribution. We treated Ax,t as the true biomass field 
for simulating data and calculating performance metrics: 

Zero cells ∼ Multinomial

(

1; size = nzero; Pzero =
1̅̅
̅̅̅̅

Sx,t
√

)

(1)  

Ax,t =

{
Sx,t
0 if x ∈ Zero cells

}

(2) 

where nzero was equal to 10% of the total number of cells-time steps 
(x × t) in the SEAPODYM output (rounded to the nearest integer) which 
matched the empirical probability of non-encounter of skipjack for the 
JPPL fishery (Kinoshita et al., 2019); and the probability of being 
selected Pzero as a zero cell was inversely proportional to the square root 
of the SEAPODYM abundance (Sx,t) at location x and time t. This had the 
effect that cells on the fringes of the spatiotemporal distribution of 
skipjack tuna were more likely to have zero abundance. 

To address the first question of the present study, Ax,t was sampled 
under six different fishing effort patterns (one fishery-independent and 
five fishery-dependent) in a simulation framework based on the 
approach taken in Ducharme-Barth et al. (2018)). For each of the 
different fishing effort patterns, observation error ϵ was incorporated to 
produce observed (sampled) abundance Âx,t at each spatial cell x and 
time t: 

Âx,t = Ax,t + ϵ (3)  

ϵ ∼ Normal(0, 0.15 × Ax,t). (4) 

Our sampling model did not result in negative observed biomasses, 
because the assumed coefficient of variation was low. However, future 
studies that assume a higher coefficient of variation may prefer 
employing a positive continuous distribution (e.g. Gamma or Lognormal) 
to model ϵ, in order to avoid generating negative observed biomasses. 

In the fishery-independent pattern (hereafter referred to as the 
Random sampling pattern), each spatial cell x had an equal probability of 
being selected, regardless of the underlying skipjack abundance. The 
five fisheries-dependent fishing effort patterns (Fig. 1) were based on the 
principle that fishers are more likely to fish in areas of higher abundance 
(Allen and McGlade, 1986; Hilborn and Walters, 1987). For both the 
fisheries-independent and fisheries-dependent scenarios, sampling of 
spatial cells within time step was done with replacement. In contrast to 
the Random sampling pattern, with the Preferential sampling pattern 
(Fig. 1 B), the probability of a spatial cell x being selected Ppref in any 
given year was proportional to simulated abundance. Sx was used, rather 
than Ax, in order to allow for the sampling of cells with zero abundance: 

Ppref ,x =
(Sx)

ϕ

∑
(Sx)

ϕ (5) 

where the probability exponent ϕ controls the magnitude of prefer-
ential sampling. When ϕ = 0 this simplifies to all spatial cells having an 
equal probability of being sampled (e.g. Random sampling) but 
increasing values of ϕ leads to a greater degree of preferential sampling. 
As a baseline for the Preferential sampling scenario a value of 0.5 was 
assumed for ϕ. This implies a weak preferential sampling where cells are 
selected in proportion to the 

̅̅̅̅̅
Sx

√
, and resulted in spatial cells with 

higher levels of simulated abundance to have a higher likelihood of 
being sampled (or fished) while also allowing for sampling on the fringes 
of the Sx distribution. A sensitivity analysis to the choice of ϕ described 
in Section 2.1.3. 

It is well established that perceived underlying abundance does not 
solely drive the distribution of fishing effort in time and space; economic 

1 SEAPODYM is an integrated age-structured, ecosystem model with explicit 
spatial population dynamics modeled using advective and diffusive processes. 
These spatial dynamics are driven by age specific environmental preference 
functions, based on observed environmental covariates, estimated in a data 
assimilation process by fitting to geo-referenced WCPFC skipjack tuna catch, 
size-frequency, and tag-recapture data. Senina et al. (2020)) showed that 
SEAPODYM is able to adequately replicate WCPO skipjack tuna dynamics 
including longitudinal shifts in distribution related to “El Niño” phases (Senina 
et al., 2008; Lehodey et al., 2020). Complete information on SEAPODYM can be 
found at http://www.seapodym.eu/. Details on the SEAPODYM model config-
uration used to produce Sx,t can be found in Senina et al. (2018)). Please see 
Supplemental Information (SI) Figure 1 for a distribution of Sx. 

N.D. Ducharme-Barth et al.                                                                                                                                                                                                                   

https://github.com/N-DucharmeBarth/spatial.sampling.sim.manuscript
https://github.com/N-DucharmeBarth/spatial.sampling.sim.manuscript
http://www.seapodym.eu/


Fisheries Research 246 (2022) 106169

4

(caption on next page) 

N.D. Ducharme-Barth et al.                                                                                                                                                                                                                   



Fisheries Research 246 (2022) 106169

5

factors and regulatory restrictions can also dictate the distribution of 
fishing effort (Wilen, 2004). Simplistically, a regulatory instrument such 
as a spatial closure can exclude fishing effort from areas that would 
otherwise be fished, and positive (negative) economic conditions can 
allow vessels to fish further away from (closer to) their home port 
(Holland, 2000; Smith and Wilen, 2003). Thus, an additional four 
fisheries-dependent sampling patterns were created, by modifying the 
base Preferential sampling pattern, to explore how these external drivers 
impact the ability to estimate abundance. This is by no means an 
exhaustive list and future work could consider the effects of other factors 
such as fishing tradition (Girardin et al., 2017) on spatial sampling 
patterns. 

The two hypothetical closure scenarios were created by applying 
temporally varying spatial closures to the Preferential pattern. In the 
Fixed closure scenario (Fig. 1 C), fishing was prohibited south of 20∘ N 
during the third quarter of the year. This is similar to the current fish 
aggregating device fishing closure imposed on purse seine vessels tar-
geting tropical tunas in the WCPFC convention area. Then, a second 
Rotating closure scenario (Fig. 1 D) was created by closing each quadrant 
of the spatial sampling frame to fishing in successive quarters of the 
year. The quadrants were determined by bisecting the area along the 
155∘ E longitudinal and 15∘ N latitudinal axes. 

Finally, hypothetical fishery Expansion and Contraction scenarios 
(Fig. 1 E & F) were created by applying a temporally-varying maximum 
distance to the distribution of fishing effort on top of the Preferential 
pattern. Japan was chosen as the “home base” for the hypothetical 
fishing fleet and the great-circle distance from Tokyo, Japan 
(139.692222∘ E, 35.689722∘ N) to every spatial cell x was calculated in 
kilometers using the distHaversine function from R package geosphere 
(Hijmans, 2019) in R 3.6.2. In the Expansion scenario, fishing effort was 
constrained to a maximum distance of 1000 km from Japan for the first 
15 time steps (i.e. the first 15 quarters) of the simulation (1/8th of the 
total simulation time of 30 years or 120 quarters). Over the next 90 
time-steps, the maximum distance was allowed to temporally vary ac-
cording to a Brownian bridge which progressively relaxed the maximum 
distance to 10,000 km by the 105th time-step in the simulation. All 
spatial cells x in the spatial sampling frame were able to be fished at this 
point, and this was maintained for the final 15 time steps of the simu-
lation. The Contraction scenario was created in the same way but with 
the pattern in time-varying maximum distance reversed. 

For each of the six fishing effort sampling patterns, a total of 60,000 
observations were generated, and each time-step t had an equal proba-
bility of being sampled. Each combination of the six fishing effort 
sampling patterns and two catchability patterns (described in the 
following Section 2.1.2) were simulated 100 times, resulting in 1200 
total data sets used to estimate abundance indices. 

2.1.2. Including catchability effects 
A second set of simulations was developed to address the second 

question of the present study, namely understanding how the changing 
fishing patterns impact the ability to estimate changes in catchability. 
This second set of simulations was identical to the six fishing effort 
sampling patterns described above, except that catchability effects (Qv,s) 
for each vessel v and set s were incorporated into the calculation of the 
observed abundance or “logbook catch” records, Âi. The catch record i 

corresponds to a discrete fishing set s by a vessel v at location x during 
time-step t. Under the catchability scenarios, Âi was defined as the 
product of simulated abundance Ax,t and the catchability effect Qv,s 
associated with that sampling or fishing instance. Fishing effort was 
assumed to be equal to the unit of sampling (e.g. sets fished). 

Âi = Ax,t × Qv,s (6) 

In turn Qv,s was defined as the expected catchability Qv,s plus a nor-
mally distributed error term. 

Qv,s = Qv,s + ϵ (7)  

ϵ ∼ Normal(0, 0.15 × Qv,s) (8) 

A normal error structure was selected as it provided a straightfor-
ward approach for linking the uncertainty in observed catch to the the 
expected catchability. As noted with Eq. 4, use of the Normal distribution 
could result in negative values for Qv,s. However, given the assumed 
coefficient of variation this was not observed to happen. Future work 
using a higher coefficient of variation could consider utilizing a positive 
continuous probability distribution. The expected catchability for a 
given vessel v and fishing set s was composed of two additive (Vesselv and 
Gearv) effects and an interactive effect (Classv × Polesv,s). The rationale 
for the consideration of these effects is provided below. Thus, the ex-
pected catchability Qv,s was expressed as: 

Qv,s = 1 + Vesselv + Gearv + Classv × Polesv,s. (9) 

Unique vessels were simulated to enter the fishery in three waves: at 
the start, at approximately one-third of the way through the simulation, 
and at approximately two-thirds of the way through the simulation. 
Each vessel was assumed to participate in the fishery every year up to its 
decommissioning age. The vessel’s decommissioning age was given by a 
random draw from a Poisson distribution with intensity λa equal to one- 
third of the total simulation length. For each unique vessel entering the 
simulation, the vessel effect Vesselv was defined as a normally distributed 
random variable: 

Vesselv ∼ Normal(0, 0.05), (10) 

where Vesselv was sorted such that vessels with a later start year (Yv) 
in the fishery, entering the simulation in the second or third wave, had a 
higher vessel effect (Fig. 2 A). This simulated the subtle, intrinsic effort 
creep that occurs at the individual vessel level in most fisheries due to 
non-measurable improvements to technical efficiency (Eigaard et al., 
2014). 

In the case study, vessels operating in the Japanese pole-and-line 
fishery for skipjack either belong to the OS class or the DW class. DW 
vessels are larger (≥ 200 gross registered tons; GRT) allowing them to 
fish more poles; and to fish further from Japan. They also have recorded 
information on gear configuration such as bird radar, sonar, and bait 
tanks. For the purposes of the simulation the vessel class effect Classv, OS 
or DW, assigned to each simulated vessel upon entrance into the fishery 
was based on the results of a single Bernoulli draw with equal proba-
bility of success. 

Fig. 1. A) Simulated spatial distribution of skipjack tuna (Katsuwonus pelamis) abundance Ax,t in the first time period. Warmer colors indicate greater levels of 
abundance around the equatorial region. White pixels indicate areas of zero skipjack abundance. The eight spatial regions of the 2019 WCPFC skipjack stock 
assessment are shown for reference. B) Simulated snapshot of the distribution of fishing effort under the Preferential spatial sampling pattern. Darker, more opaque 
blues indicate a greater density of fishing effort. This corresponds to greater sampling in areas of higher skipjack abundance. C) Fishing effort distribution (blue 
pixels) under the Fixed spatial closure scenario, under which no fishing takes place south of 20∘ N in the third quarter of the year. D) Fishing effort distribution under 
the Rotating spatial closure scenario, under which quadrants of the spatial sampling frame are sequentially closed to fishing in each quarter of the year. E) Schematic 
indicating the approximate distances from Japan of locations within the spatial extent of the simulation. F) Maximum distance from Japan fished under the 
Contraction (blue) and Expansion (red) scenarios in each time step of the simulation. The solid line indicates the median maximum distance for each effort pattern 
across all 100 replicates while the shaded region shows the 80th-percentile across the replicates. The horizontal lines correspond to the distances depicted in the 
Bottom left panel. 
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Classv =

{
DW if Bernoulli(1, p = 0.5) = 1
OS if Bernoulli(1, p = 0.5) = 0

}

(11) 

Each unique vessel entering the fishery was determined to have a 
gear effect Gearv that was based in part on the vessel’s class designation 
(DW or OS) and the vessel start year Yv. Depending on the year entered, a 
DW vessel was randomly assigned either a lower (DW 1) or higher (DW 
2) gear effect. In this simulation the gear effect was viewed as a proxy 
variable to represent increases in catchability due to the large scale 
adoption of improved fishing technologies (gear configuration) at the 
fleet level as they became available. In the case of the Japanese pole- 
and-line fishery these changes to gear configuration included the 
adoption of improved bird radars to aide in the discovery of surface 
schools ( ~ 1987), low-temperature bait tanks which improved the 
survival of bait fish used to encourage feeding around the vessel ( ~ 
1982), and sonar to locate schools ( ~ 1982) (Shono and Ogura, 2000; 
Kiyofuji, 2013). DW vessels entering the fishery later in the simulation 

period had a better chance of being assigned a “better” gear configura-
tion and had a higher Gearv effect to reflect this. 

Gearv=

⎧
⎪⎨

⎪⎩

0.1×Binomial(1,
1

1+exp(− 0.12×(Yv − 60))
) if Classv=DW

− 0.05 if Classv=OS

⎫
⎪⎬

⎪⎭

(12) 

Lastly, given the difference in size between the two vessel classes, an 
interaction between the number of poles fished and the vessel class was 
considered. For each set s fished by a vessel, the number of poles fished 
ps was given as a random draw from the Poisson distribution with in-
tensity λp specified by the vessel class (Fig. 2 B). A quadratic effect on 
catchability with respect to the number of poles fished was included, 
Polesv,s (Fig. 2 C). The rationale behind this modeling choice is that, up to 
a certain point, more poles results in a greater catchability, yet too many 
poles can result in reduced catchability due to over-crowding: 

Fig. 2. Top: Example of simulated fleet composition over time. Red dotted lines indicate offshore (OS) vessels and blue solid lines indicate distant water (DW) vessels. 
Dark blue indicates a DW 2 vessel with a higher catchability effect. The start and end of each line indicates the activity period for unique vessels. The left y-axis 
indicates the relative vessel power of each vessel (as a combination of Vesselv, Gearv, and Classv) where vessels entering the simulation at a later year have a higher 
relative vessel power compared to others in the same class. The gray polygon gives the number of unique vessels active in the fishery over time. Middle left: The 
cumulative distribution of the number of poles fished with the color indicating the corresponding vessel class, OS (red) and DW (blue). Middle right: The interactive 
effect on catchability of vessel class and number of poles fished. Bottom: Average set-specific catchability Qv,s, on a relative scale, over time. 
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Polesv,s =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0.10 × (0.75 +
− (0.25 × ps − 6.25)2

1 + (0.25 × ps − 6.25)2) if Classv = DW

0.05 × (0.50 +
− (0.25 × ps − 3.75)2

1 + (0.25 × ps − 3.75)2) if Classv = OS

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(13)  

ps ∼

{
Poisson(λp = 25) if Classv = DW
Poisson(λp = 15) if Classv = OS

}

(14) 

An example of the simulated fleet and vessel characteristics across 
time is shown in Fig. 2 A & D. 

2.1.3. Sampling sensitivity 
The spatial sampling scenarios described in Section 2.1.1 made 

specific assumptions as to the degree of spatial change in sampling 
distribution (Expansion/Contraction scenarios), and also the strength of 
the probability weight used to define the Preferential sampling. In order 
to ascertain the robustness of results to these specific assumptions, two 
additional simulation experiments were developed. 

In order to further evaluate the effects of fishing distribution 
contraction on the ability to recover the true population trend, addi-
tional data-sets were simulated under the Contraction sampling pattern 
described in Section 2.1.1 where the degree of spatial contraction was 
controlled. Eight “sets” of 10 replicates of data (80 total data-sets) were 
simulated where each “set” of data had a progressively greater 
maximum distance from Japan (in increments of ~ 1, 285 km from 
1000 km up to 10,000 km) in the final 15 time-steps of the simulation 
(SI Figure 5). Each data-set assumed vessels could fish up to a maximum 
distance of 10,000 km in the initial 15 time-steps of the simulation. 
Additionally, each of the 80 data-sets were modeled with and without 
catchability effects (see Section 2.1.2 for a description of the catchability 
effects). This sensitivity experiment allowed us to gauge how model 
performance degraded as a function of a reduction in the area sampled 
by exploring an additional range of sampling scenarios book-ended by 
the Contraction sampling pattern at one extreme and the Preferential 
sampling pattern at the other. 

A similar experiment was devised to evaluate the potential bias and 
error caused by varying strengths of preferential sampling. Eight “sets” 
of 10 replicates of data (80 total data-sets) were simulated where each 
“set” of data had a greater probability weight ϕ used to define the 
strength of the preferential sampling (ϕ ∈ {0, 0.25, 0.5, 1, 1.5, 2, 4, 8}). 
The value in bold (ϕ = 0.5) indicates the assumption of weak prefer-
ential sampling made in the Preferential sampling pattern, while a value 
of zero for ϕ would produce samples equivalent to the Random sampling 
pattern. The average spatial distribution of sampling effort for various 
values of the probability exponent ϕ are shown in SI Figure 6. Similarly 
to the Contraction sensitivity, each of the 80 data-sets were modeled with 
and without catchability effects. 

2.1.4. Estimating indices 
For each of the 1200 simulated data sets described in Section 2.1.1, 

four different configurations of a spatiotemporal delta-lognormal GLMM 
implemented using R package VAST release number 3.2.22(Thorson, 
2019a) were employed to estimate abundance indices It from the 
simulated logbook data Âi. A baseline configuration of the spatiotem-
poral model3 consisted of specifying two sub-models, as in any delta 
model: one for modeling the encounter probability with a binomial error 
structure, and one for modeling positive catch component with a 

lognormal error structure (Lo et al., 1992). Each sub-model separately 
estimated spatial variation (spatial random effects) as well as spatio-
temporal variation (a set of spatiotemporal random effects for each 
unique combination of spatial time-step) at 150 “knots” that were uni-
formly distributed across a 1∘ spatial extrapolation grid defined by the 
model’s spatial domain. In this case the model spatial domain was 
defined as a convex hull around the observed sampling locations with a 
~ 275 km buffer. The spatial correlation structure of both the spatial 
random effects and the spatiotemporal random effects was governed by 
a multivariate normal random field with a Matérn spatial covariance 
function. For the spatiotemporal random effects, no correlation struc-
ture was assumed for the temporal component of variation. Indices were 
calculated as a spatial average of the predicted density across the model 
extrapolation grid. Uncertainty around the index was derived using a 
generalization of the delta-method (Kass and Steffey, 1989). Though the 
results focus on the index estimated for the entire WCPFC assessment 
area, abundance indices were simultaneously estimated by a spatio-
temporal model for the eight regions within the assessment area (Fig. 1 
A). 

In order to examine the effect of changing the spatiotemporal model 
structure on the estimated indices, four alternative configurations of the 
spatiotemporal model were developed. Model configuration was done 
according to a full factorial combination of either including a seasonal 
environmental covariate on abundance (SST) or including a regional 
annual climate index (the Niño 4 index) as a spatially varying coefficient 
(SVC; Thorson, 2019b). This resulted in the following four configura-
tions: the baseline spatiotemporal model described above (NoE), the 
baseline spatiotemporal model with the inclusion of an environmental 
covariate (E), the NoE spatiotemporal model with the inclusion of a 
regional annual climate index as a SVC (NoESVC), and the E spatio-
temporal model with the inclusion of a regional annual climate index as 
a SVC (ESVC). Model selection (using Akaike’s Information Criteria or 
otherwise) was not explicitly addressed in this study. However infor-
mation on relative model performance (and therefore selection) is 
available in the Supplemental Information section “Model selection”. 
Future studies could more explicitly explore the consequences of con-
ducting model selection among covariates on spatiotemporal CPUE 
standardization performance (e.g. Han et al., 2021). 

For the E and ESVC models, the Reynolds monthly 2∘ gridded SST 
data4 (Smith and Reynolds, 1981) from 1979 to 2008 aggregated to a 
quarterly time scale was included as a covariate using a three-degree 
polynomial spline implemented using the bs function in R package 
splines (R Core Team, 2021). Skipjack tuna are most abundant in tropical 
waters so it is expected that SST and skipjack abundance are positively 
correlated (See SI Figure 2). Implementing the relationship as a poly-
nomial spline allows for the estimation of an optimal temperature with 
estimated abundance declining as the temperature moves away from the 
optimum. Additionally note that, within the SEAPODYM model, a 
temperature preference for adult skipjack tuna is estimated and used as a 
component of the advective movement of adult skipjack biomass in the 
model (Senina et al., 2020). 

In the NoESVC and ESVC models, the quarterly Niño 45 index was 
included as a SVC. Skipjack tuna are known to shift their distribution 
towards the central Pacific during negative or “El Niño” phases of the 
Southern Oscillation Index (Lehodey et al., 1997) which has been 
replicated using SEAPODYM (Senina et al., 2008; Lehodey et al., 2020). 
The Niño 4 index is the western most Niño index, and is the temperature 
anomaly calculated over a region (160∘ E to 210∘ E longitude and from 5∘ 

S to 5∘ N latitude) which overlaps the most with the spatial simulation 
frame. For reference, positive temperature anomalies in the Niño 4, 
hereafter referred to as ENSO, box coincide with “El Niño” conditions or 
negative phases of the Southern Oscillation Index. Including the climate 2 Accompanying utility functions for VAST used in this analysis can be found 

in v1.0.0 of the R package ofp-sam-vast-utils: https://github.com/Pacifi 
cCommunity/ofp-sam-vast-utils/releases/tag/v1.0.0  

3 A technical description of the spatiotemporal model can be found in the 
Supplemental Information section “VAST Technical Annex”. 

4 https://podaac.jpl.nasa.gov/dataset/REYNOLDS_NCDC_L4_MONTHLY_V5  
5 https://psl.noaa.gov/enso/dashboard.html 
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index as an SVC in the spatiotemporal model results in the estimation of 
an additional set of mean zero random effects (corresponding to the 
aforementioned “knots”), and an extra fixed effect (the random effect 
variance term) for each component of the delta model. These extra 
random effects can be interpreted as the slope of the relationship be-
tween abundance at that spatial location and the ENSO index. A positive 
random effect indicates that abundance is estimated to increase at that 
given location with “El Niño” phases of the climate index, and the 
magnitude of the random effect will give the size of the estimated 
change in abundance (Thorson, 2019b). Additional detail on how 
environmental covariates are included in the VAST model is provided in 
Supplemental Information section “VAST Technical Annex”. 

For the data sets where catchability effects were included, the four 
spatiotemporal model configurations were modified to include the 
estimation of normally distributed vessel random effects REv and the 
estimation of fixed effects for the remaining catchability components Q̂i 
for both the binomial and lognormal components of the model. These 
models are indicated by the prefix Q- and additional detail on the con-
struction of these models is provided in Supplemental Information sec-
tion “VAST Technical Annex”. 

REv ∼ Normal(0, σv) (15)  

Q̂i ∼ Geari + Classi × bs(Polesi, df = 3) (16) 

Lastly, for the purposes of the two additional sampling sensitivity 
experiments described in Section 2.1.3, Contraction and Preferential, only 
the NoE and Q-NoE model formulations were considered. 

2.1.5. Model Performance 
Model performance in all simulations was evaluated relative to the 

“true” index from the SEAPODYM output, Tt. Regional indices were 
calculated by summing up all Ax,t within each time step for the cells x 
that fell within the boundaries of the given region. 

Tr,t =
∑nx

x=1
Ax,t : x ∈ Regionr (17) 

The estimated index It is calculated at each time step within VAST as 
the sum of the area × predicted density across all grid cells defined 
within the model domain. Prior to assessing model performance, all 
indices (estimated It and true Tt) were rescaled to a mean of 1 by dividing 
by the overall index mean. Model performance was assessed in three 
different ways: error, bias, and coverage. 

Model error was measured using root mean squared error (RMSE; 
Stow et al., 2009): 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

t=1(It − Tt)
2

n

√

. (18) 

A model with no error would have an RMSE of 0. Additionally, RMSE 
gives greater weight to larger errors (as compared to mean absolute 
error) so poor fits to the true index are penalized and result in a larger 
RMSE (Stow et al., 2009). 

Model bias was measured as the slope parameter β from a linear 
model between the true index Tt and the simulated index It (Thorson 
et al., 2015; Grüss et al., 2019): 

It = α + β × Tt + ϵt (19)  

ϵt ∼ Normal(0, σ2
ϵ). (20) 

A β of 1 indicates that the estimated index accurately tracks changes 
in the true index. A β greater than 1 indicates that the estimated index It 
overestimates the true change in abundance over time, while a β less 
than 1 indicates that the estimated index It underestimates the true rate 
of change of abundance (Wilberg et al., 2009; Thorson et al., 2015). 

Finally, coverage was calculated (Equations 21 & 22) as the 

proportion of years over the study period that the estimated 50% con-
fidence interval contained the true index (Agresti and Coull, 1998; 
Newcombe, 1998; Brown et al., 2001): 

Coverage =
1
t

∑n

t=1
Ct (21)  

Ct =

{
if Tt ≤ It + Z50%σIt and Tt ≥ It − Z50%σIt then Ct = 1
else Ct = 0

}

(22) 

where Z50% is the Z-score associated with the 50% confidence in-
terval (0.675) and σIt is the time varying model-estimated uncertainty 
around the estimated index It, defined as a standard error. Well- 
performing confidence intervals are ones where the nominal (pre-
determined) probability equals the actual proportion of years where the 
confidence interval contains the true value. Assuming the estimated 
index is approximately unbiased and that the predetermined probability 
is 50%, the target level of Coverage is 0.5. Coverage values greater than 
0.5 indicate that the estimated confidence intervals are too wide and 
Coverage values less than 0.5 indicate that the estimated confidence 
intervals are too narrow (Bolker, 2008; Johnson et al., 2016). Coverage 
values of less than 0.5 could also be an indication that there is bias in the 
estimated index and that the estimation model is unable to capture the 
true value. Coverage metrics can of course be calculated for any level of 
confidence interval, though the inference drawn will be the same. For 
completeness, additional coverage metrics were calculated for the 70% 
and 95% confidence intervals and these can be found in Supplemental 
Information section “Additional coverage metrics”. 

We determined if the spatiotemporal models were converged by 
checking that the gradient of the marginal log-likelihood was less than 
0.0001 for all fixed effects, and that the Hessian matrix of second de-
rivatives of the negative log-likelihood was positive definite. Spatio-
temporal models that did not meet these criteria were excluded from 
analyses. Additionally, spatiotemporal delta-GLMMs are computation-
ally intensive and a subset of models failed to estimate for computational 
reasons (e.g. running out of available memory on the compute machine), 
and these models were also excluded from the analysis. 

2.2. Fishery application 

2.2.1. Description 
Spatiotemporal delta-GLMMs were also applied to the analysis of 

catch records from a fishery where the spatial sampling has changed 
over time, in this case the JPPL fishery for skipjack tuna in the WCPO 
(Fig. 3). Daily catch observations from the JPPL fishery, where catch was 
recorded as metric tons (mt) of skipjack tuna caught per day, were 
available for the period of 1972–2018 from the National Research 
Institute of Far Seas Fisheries (NRIFSF) operational logbook. This cor-
responded to 1,088,659 daily catch records. Data were collected with a 
1∘ spatial resolution, where the position recorded in the logbook was the 
noon position from that day’s fishing activities. In addition to the catch, 
date and location of fishing activity; the logbook records also contained 
detailed information about the vessel including vessel class (OS or DW), 
GRT (vessel size), vessel identifier, the average number of poles fished 
that day, and in the case of DW vessels, the gear configuration/fishing 
technology employed (i.e. presence of low temperature live bait tank, 
type of bird radar, sonar, NOAA meteorological satellite image receiver; 
see Shono and Ogura, 2000 for more information). 

Preparation of the data for the current analysis followed the “SP2′′

data-screening procedure for the “geostatistical delta-GLMM” analysis 
conducted in support of the 2019 WCPFC skipjack tuna stock assessment 
(Vincent et al., 2019) as described in Kinoshita et al. (2019)). Briefly, 
this screening process 1) removed data from vessels that had operated 
for less than five years and less than 10 days per year, 2) removed vessels 
that did not have any vessel ID information, 3) removed DW vessels 
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without gear configuration information, and 4) removed data with un-
likely values; namely fewer than two poles fished, fewer than five crew 
members, and catches greater than 200 mt. 

2.2.2. Estimating indices 
The spatiotemporal delta-GLMM models used to estimate indices 

from the JPPL operational data were structured following the models 
described in Section 2.1.4, while also incorporating knowledge from 

previous spatiotemporal delta-GLMM modeling of this data set 
(Kinoshita et al., 2019). The four configurations of the spatiotemporal 
model including catchability effects described in Section 2.1.4 were 
constructed: NoE, E, NoESVC, and ESVC. However, instead of modeling 
the relationship with SST using a cubic-spline, a simpler linear rela-
tionship was assumed as in Kinoshita et al. (2019)). Preliminary models 
from Kinoshita et al. (2019)) where SST was modeled using a 
cubic-spline showed a counter intuitive result in the estimated SST 

Fig. 3. Spatial distribution of the Japanese pole-and-line (JPPL) fishery by vessel class: distant-water (DW; top) and offshore (OS; bottom). The color of the 1∘ spatial 
cell indicates the last year that a vessel fished in that cell. The 2019 WCPFC stock assessment boundaries are superimposed on the distributions of fishing effort (black 
lines). Note: A confidentiality mask has been applied such that 1∘ spatial cells plotted in the figure correspond to data from at least three unique vessels. 
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relationship with peak skipjack catch-rates occurring in cooler waters. 
This was hypothesized to occur due to high catch-rates fishing near 
temperature fronts in the warm, Kuroshio Extension current (140∘E to 
170∘E & 30∘N to 50∘N) and a mismatch in the resolution of the associated 
environmental covariate. A sensitivity model (E.Spline) where the SST 
relationship was modeled with a cubic-spline was estimated for 
comparison. 

The modeling of catchability effects also varied slightly from the 
approach described in Section 2.1.4. Following Kinoshita et al. (2019)) 
the models for the fishery application estimated a normally distributed 
vessel random effect and accounted for vessel class, vessel size and 
number of poles fished as catchability components Q̂i as follows: 

Q̂i ∼ Classi + bs(Polesi, df = 5) + bs(GRTi, df = 5) (23) 

Information on gear configuration/fishing technology was not 
accounted for in the standardization model as this information was 
unavailable for the OS component of the fishery. However, preliminary 
models fit solely to DW trips, where this information was available, 
showed that including these covariates resulted in negligible change to 
the estimated index. 

Though the same data and data-preparation methods were employed 
as in Kinoshita et al. (2019)), there are some differences in the models 
used for index standardization that preclude the direct comparison with 
the indices used in the 2019 WCPO skipjack tuna stock assessment 
(Vincent et al., 2019). In addition to the aforementioned differences, the 
current analysis is based on a spatiotemporal model structure with 150 
uniformly distributed spatial “knots” or random effects whereas the 
indices developed in Kinoshita et al. (2019)) were based on 288 spatial 
“knots” that were distributed in proportion to the spatial density of the 
data. Furthermore, the spatiotemporal delta-GLMM used in Kinoshita 
et al. (2019)) modified the VAST source code to apply a temporal-mask 
in the calculation of the standardized indices from the abundance esti-
mated at all extrapolation grid cells. This mask functioned such that the 

predicted abundance from cells which were deemed to be “biologically 
unfeasible” did not factor into the spatial average to generate the esti-
mated abundance index. In the case of the Kinoshita et al. (2019)) 
analysis, cells were excluded from the calculation if their average tem-
perature was below a minimum temperature threshold (18∘C for skip-
jack; Kiyofuji et al., 2019) for the time-step in question. 

3. Results 

3.1. Simulation 

Relative to the nominal CPUE trends, spatiotemporal models appear 
to be able to better account for shifts in fisheries spatial sampling and 
produce abundance indices that more closely reflect the “true” abun-
dance trend at the level of the entire WCPO region (Fig. 4). However, 
estimation model performance was not consistent across the spatial 
sampling patterns considered. Unsurprisingly, the Random and Prefer-
ential spatial sampling patterns produced abundance indices that were 
approximately unbiased (under both the catchability and no catchability 
scenarios; Fig. 5 G & H), with the lowest level of error (Fig. 5 A & B), and 
confidence intervals with the appropriate level of coverage (Fig. 5 M & 
N). However, an unexpected result was that estimated abundance 
indices from the Preferential sampling pattern appeared to be qualita-
tively less biased than abundance indices from the Random effort pattern 
(Fig. 5 G & H), though there was considerable overlap in the degree of 
bias measured from models under both spatial sampling patterns. This 
finding was more thoroughly explored in a sensitivity experiment 
(Section 3.1.1). Spatiotemporal models also appeared to perform fairly 
well under the Rotating seasonal closure scenario (Fig. 5 F, L & R). 
Furthermore, under the Rotating seasonal closures scenario, when vari-
able catchability was introduced, abundance indices appeared qualita-
tively less biased than abundance indices estimated from either the 
Preferential or Random spatial sampling patterns (Fig. 5 L). By compar-
ison, performance of spatiotemporal models estimated from the Fixed 

Fig. 4. Example time series from a single replicate of each of the 42 spatial sampling scenario (columns) and estimation model (rows) combinations. In each panel 
the “true” simulated index is shown by the bold black line, the nominal unstandardized index is shown with the thin gray line, and the standardized index is shown in 
blue with the 95% confidence interval denoted by the shaded polygon. All indices were normalized to a mean of one for plotting. 
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seasonal closure scenario was dragged down by poor estimation in the 
closure quarter, particularly when SST was included as an environ-
mental covariate (Fig. 4 E2 & E4). Abundance indices from the Expan-
sion and Contraction scenarios were also quite poorly estimated and 
tended to underestimate the true rate of change in the simulated 
abundance trends (β < 1; Fig. 5 I & J). This was not unexpected given 
the extreme shifts in sampling distribution simulated under both of these 
scenarios. Additionally, the abundance indices from the Expansion and 
Contraction scenarios grew quite variable when sampling effort was 
constrained to the area around Japan. This is also expected, as seasonal 
variation in abundance, in the real world but also in SEAPODYM, is 
highest in the northern latitudes around Japan. This particular result 
may not be completely generalizable to cases where the degree of sea-
sonal variability is perhaps more homogeneous across the sampling and 
model domains. 

In general, the models from scenarios where catchability effects were 
simulated and estimated produced abundance indices with similar levels 
of error as the models from scenarios where catchability effects were not 
simulated and not estimated (Fig. 5 A-F). However, the models where 
catchability was estimated tended to produce abundance indices with a 
greater degree of bias and wider confidence intervals relative to the 
indices from scenarios without catchability effects simulated. This 
marginally worse performance is expected given that the spatiotemporal 
models are estimating additional catchability-related fixed and random 
effects from the same quantity of input data. It is encouraging that 
despite this, the models do appear to be able to disentangle temporal 
changes in catchability from temporal changes in the sampled popula-
tion (due to natural variability and shifts in spatial sampling), provided 
the shifts in spatial sampling are not too extreme. However, it is worth 
noting that the catchability models tested in our simulation framework 
were specified to match the operating model under which the catch-
ability effects were generated. These results may not hold in cases where 

the estimation model is mis-specified (i.e. where missing catchability 
variables are non-random with respect to spatial location or other model 
components). 

Under spatial sampling scenarios with a good spatiotemporal sam-
pling coverage (i.e. under the Preferential and Random scenarios), the 
inclusion of an environmental covariate on abundance (SST) or an SVC 
(ENSO index) in the spatiotemporal model did not meaningfully alter 
the estimated abundance indices at the level of the entire WCPO region. 
The effect of including the SST as a covariate was mixed for scenarios 
with impaired spatiotemporal coverage (i.e the four other sampling 
scenarios considered in this study), though inclusion of the ENSO index 
( − SVC models) still did not have a noticeable influence on the esti-
mated abundance indices. Under the Rotating closure scenario, including 
the environmental covariate reduced error (Fig. 5 F & L) and bias, while 
resulting in a more appropriate confidence interval coverage under the 
no catchability scenario. This pattern reversed once catchability effects 
were simulated and estimated. For the Fixed spatial closure scenario, 
including the environmental abundance covariate substantially 
degraded model performance and coverage levels, as the estimated SST 
relationship with abundance was biased by the exclusion of observations 
from the WCPO “warm-pool” in the third quarter of the year. Though 
inclusion of SST resulted in greater error under the Expansion and 
Contraction scenarios, it did appear to improve confidence interval 
coverage and measured bias for the Expansion scenario (Fig. 5 J & P). 

A total of 4800 estimated indices were considered in this analysis. 
Application of the retention criteria based on model convergence and 
completion retained 3339 models ( ~ 70%). We note that models where 
SVC was included tended to fail at a higher rate resulting in the fewest 
retained replicates. This is likely due to poor estimation of the associated 
random effects resulting in a singularity issue during model estimation. 

Fig. 5. Summary of the three metrics (rows) calculated across all replicates for each of the 42 spatial sampling scenario (columns) and estimation model (x-axis 
within each panel) combinations. The three metrics include: root mean squared error (RMSE), bias, and confidence interval coverage (see Section 2.1.5 for a 
description of the metrics). Each panel contains box plots showing the 25th percentile, median, and 75th percentile across all retained replicates. Outlier replicates are 
shown as gray points and these were determined as being more than 1.5 times outside of the inter-quartile range. The blue boxplots correspond to models where 
catchability effects were simulated and estimated, while the red box plots correspond to models where catchability effects were not simulated and not estimated. The 
number of replicates meeting the criteria for retention in the analysis is listed above the name of the model at the bottom of the figure. 

N.D. Ducharme-Barth et al.                                                                                                                                                                                                                   



Fisheries Research 246 (2022) 106169

12

3.1.1. Sampling sensitivity 
As expected, abundance index performance degraded as a function of 

decreasing spatial extent of sampling. This was most apparent in terms 
of model error (Fig. 6a), while both bias (Fig. 6b) and confidence in-
terval coverage (Fig. 6c) degraded more slowly. In general, abundance 
index performance did not meaningfully degrade until the proportion of 
the area sampled in the final time-steps fell below 20–40% of a given 
region. At the scale of the entire WCPO region, this occurred once the 
simulated fishing fleet had contracted to within 3600 km from Japan in 
the final time-steps, but at a distance of 6200 km in the context of 
assessment region 8 (See Fig. 1 A for map of assessment regions). Metrics 
within the assessment region closest to the Japanese mainland (i.e. re-
gion 1), were essentially unchanged as simulated fishing contracted, and 
even marginally improved as sampling became increasingly concen-
trated in the region. 

An encouraging sign was that abundance index performance 
appeared to be similar between scenarios where catchability effects 
were simulated and estimated and scenarios where they were not. This 
indicated that shifts in spatial sampling did not completely compromise 
the model’s ability to correctly estimate potentially confounded tem-
poral shifts in catchability. However, when catchability effects were 
estimated, there was some indication that there was a slight underesti-
mate of the true rate of change in the abundance index relative to when 
catchability effects were not simulated/estimated (Fig. 6b 1–3). Addi-
tionally, confidence intervals were estimated to be too broad in the 
abundance indices from scenarios where catchability were estimated 
(Fig. 6c 1–3). 

Further investigation into the aforementioned finding that abun-
dance indices estimated from the Preferential sampling scenario showed 
equal or better performance than those abundance indices estimated 
from the Random spatial sampling pattern indicated that this was not a 
robust finding and was dependent on the intensity of simulated prefer-
ential sampling. As expected, when spatial sampling contracted into the 
core of the simulated skipjack distribution due to high preferential 
sampling intensity (ϕ ≫ ) model error increased (Fig. 7a), the estimated 
abundance index no longer changed at a rate proportional to simulated 
abundance (Fig. 7b), and estimated confidence tended to be overly tight 
(Fig. 7c). However, degradation in estimated abundance index perfor-
mance was not linearly related to ϕ. Abundance indices estimated from 
spatial sampling scenarios where simulated with ϕ less than 1, per-
formed similarly and in fact optimal metrics were achieved when ϕ fell 
within a range of 0.5–2. Inference was similar between scenarios where 
catchability effects were simulated and estimated and scenarios where 
they were not, though scenarios where catchability effects were simu-
lated and estimated showed relatively worse performance. 

3.2. Fisheries application 

Skipjack tuna relative abundance indices for the JPPL fishery in the 
WCPO were virtually identical across the four candidate models and the 
sensitivity model. Given this similarity, presentation of the results will 
focus on the ESVC model (An Akaike Information Criterion table for the 
models can be found in Supplemental Information section “Model se-
lection”, and model outputs for the ESVC model can be found in Sup-
plemental Information section “VAST outputs”). Despite accounting for 
vessel ID, vessel class, vessel size, and number of poles fished, the esti-
mated abundance index was largely consistent with the nominal CPUE 
and showed a largely flat trend across the model period (Fig. 8). Model 
regions 5 and 6, which exhibited the poorest spatial sampling over the 
model period, showed the largest deviation from the nominal CPUE. The 
absence of observations meant that the abundance indices estimated in 
model regions 5 and 6 were mostly driven by patterns in predicted 
abundance from adjacent regions via the spatial correlation structure 
estimated by the spatiotemporal model. Seasonal variability was evident 
in all model regions, though the most temperate model regions (i.e. 
regions 1 and 2) showed the greatest degree of intraannual variation. 

Inference about the relationship between SST and skipjack positive 
catch-rate (or encounter probability) could change as a result of the 
functional form used even if this does not translate to a perceptible 
difference in the estimated relative abundance index (Fig. 9). Given that 
skipjack is a tropical tuna species with the bulk of the biomass distri-
bution located within 10∘ latitude of the equator (Moore et al., 2020), it 
is unsurprising that both the linear effect (E & ESVC) and the cubic spline 
(E.Spline) formulations estimated a positive relationship between SST 
and encounter probability for WCPO skipjack. Surprisingly, the E.Spline 
model estimated a quasi-parabolic relationship between SST and posi-
tive catch-rates, with catch-rates predicted to be lower in temperate 
waters, and high in waters below 18∘ C (which is the lower thermal limit 
for skipjack; Kiyofuji et al., 2019). This estimated relationship is likely 
driven by high reported catch-rates from JPPL vessels fishing in the 
Kuroshio Extension area during the first and fourth quarters of the year, 
and the potential for skipjack tuna to make very brief forays into colder 
waters below the thermal limit, as identified in archival tagging data 
(Kiyofuji et al., 2019). 

Estimated skipjack spatial distribution patterns from JPPL fisheries 
data corroborate our existing understanding of the WCPO skipjack 
stock’s spatial and temporal dynamics (Fig. 10). As described in Moore 
et al. (2020)), encounter-rates are predicted to be highest within tropical 
and sub-tropical waters in the WCPO ( ~ 30∘S to 30∘N latitude), with 
catch-rates higher in the equatorial (10∘S to 10∘N latitude) central Pa-
cific Ocean. As seen in Fig. 10 (top-right), the ESVC model also estimates 
very high catches off of south-eastern Australia where the East Austra-
lian Current splits off from the coast to form the Tasman Front. This is 
likely a data artifact given the very small number of observations from 
this area (all within recent years). However, oceanographically this area 
is similar to the Kuroshio extension area where a warm-water current 
meets a cold-water mass. 

4. Discussion 

Consistent with previous observation and research (Carruthers et al., 
2010; Maunder et al., 2020), this paper explicitly demonstrates how 
common fisheries-dependent sampling patterns, especially those driven 
by exogenous forces, can result in biases to standardized abundance 
indices. Within the range of scenarios that were considered in the pre-
sent study, the Rotating, Preferential and Contraction (if sampling covered 
at least ~ 20 − 40% of the target spatial domain) spatial sampling 
scenarios performed comparably to the baseline Random sampling 
pattern indicating that spatiotemporal delta-GLMMs may still be 
appropriate to use if the departure from uniform, random sampling is 
not too extreme. However, the simulations conducted in the present 
study also demonstrated that even when the estimation model matched 
the induced catchability effects on positive catch-rates, estimation 
models developed under the Random sampling scenario were not able to 
completely remove the effects of temporal changes in catchability and 
produce an unbiased abundance index. Although the resulting abun-
dance indices were not perfect, models were generally able to disen-
tangle temporal changes in abundance due to spatial shifts from 
temporal changes in catchability, provided that the spatial shifts were 
not too severe. Lastly, in the context of the simulation experiment, in-
clusion of environmental covariates or climatic indices via SVC in the 
spatiotemporal model did not appear to improve model performance 
beyond the standard model configuration including only spatial and 
spatiotemporal random effects. However, this could be due to the 
tropical focus of the simulation and case-study as a more pronounced 
impact is seen in temperate fisheries with perhaps greater seasonal 
variability (Thorson, 2019b). 

The simulations explored in the current study indicate that the bias 
and error associated with preferential sampling are not manifested in a 
binary sense, but rather exist on a continuum. The expected result is that 
when data generated from preferential sampling is used to create an 
abundance index, it will not be representative of the underlying 
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Fig. 6. Summary of the three metrics considered in this 
study, a) root mean squared error (RMSE), b) bias, and c) 
confidence interval coverage for the sensitivity to the 
degree of spatial contraction (see Section 2.1.5 for a 
description of the metrics). Within each group of figures, 
the rows correspond to the models fit with and without 
catchability, while the columns correspond to results 
from select model regions: the western and central Pacific 
Ocean (WCPO), Region 1 (closest to Japan (JP) and 
temporally well sampled), and Region 8 (furthest from 
Japan and most sensitive to sampling effort contraction). 
Within each panel the box-plots are arranged in terms of 
decreasing simulated spatial contraction (left to right), 
and are colored according to the proportion of the area 
sampled in the final time-steps of the simulation. Note 
that the degree of spatial contraction does not change 
linearly across the x-axis.   
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Fig. 7. Summary of the three metrics a) RMSE, b) Bias, 
and c) Coverage for the sensitivity to the degree of 
preferential sampling. Within each group of figures, the 
rows correspond to the models fit with and without 
catchability, while the columns correspond to results 
from select model regions: WCPO, Region 1 (closest to 
Japan and on the fringe of the SEAPODYM skipjack dis-
tribution), and Region 8 (furthest from Japan and closer 
to the core of the SEAPODYM skipjack distribution). 
Within each panel the box-plots are arranged in terms of 
increasing simulated preferential sampling strength (left 
to right), and are colored according to the proportion of 
the area sampled. Note that a non-linear transformation 
has been applied to the x-axis.   
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population (Diggle et al., 2010; Conn et al., 2017). Though this is un-
doubtedly true in situations of extreme preferential sampling such as the 
one explored in (Pennino et al., 2019), it is not always the case. Models 
fit to data with weak preferential sampling (e.g Preferential scenario) 
performed as well or better than models fit to data from Random sam-
pling. The sensitivity experiment manipulating the preferential sam-
pling intensity appeared to illustrate a slight trade-off between sampling 
at the core of the abundance distribution versus completely sampling the 
entire range of the underlying species when preferential sampling was 
weak. However, a caveat to this finding is that this trade-off is likely only 
applicable in cases where the underlying abundance distribution is 
temporally stable. Non-stationarity or range contraction in the species’ 
abundance distribution coupled with preferential sampling would likely 
lead to increased bias and error, relative to random sampling, even in 
cases where preferential sampling is weak. As a result the spatiotem-
poral distribution of samples should be carefully scrutinized in the 
context of the perceived underlying abundance distribution prior to 
estimating abundance indices using spatiotemporal models. 

Fisheries-dependent data are typically spatially imbalanced, as 
fishers usually target rather than randomly sample fish populations 
(Walters, 2003; Maunder and Punt, 2004; Lynch et al., 2012). In this 
context, caution is warranted regarding the specifications of spatio-
temporal models fitted to fisheries-dependent data. One primary means 
of dealing with spatially-imbalanced fisheries-dependent data is to 
proceed as we did in the present study and allocate the “knots” for 
approximating spatial and spatiotemporal variation terms uniformly 
over space using a predefined spatial grid, rather than based on fishing 
intensity using a k-means algorithm (Grüss et al., 2019). Additional 
means of dealing with spatially-imbalanced, fisheries-dependent data 
are the use of a “bias-correction estimator” (Thorson and Kristensen, 
2016), and employing a first-order autoregressive structure across time 
for the spatiotemporal variation terms (Thorson, 2019a). The very large 
number of data points and scenarios handled in the present study 

precluded us from implementing these two additional options within 
reasonable computation time, but we recommend that future studies 
working with smaller datasets consider them. The bias-correction esti-
mator developed in Thorson and Kristensen (2016)) is useful to correct 
for the “retransformation bias” when one predicts a derived quantity 
that involves a non-linear transformation of the random effects. A 
first-order autoregressive structure across time for the spatiotemporal 
variation terms allows for the estimation of abundance in unfished areas 
based on predicted abundance for these areas in adjacent years rather 
than based on a long-term predicted average abundance for these areas 
(Thorson, 2019a). Future work with fisheries-dependent data where 
preferential sampling is taking place should consider exploring a joint 
model for fishing location and density such as the marked point process 
model applied by (Pennino et al., 2019). This would be feasible in a 
framework such as VAST by specifying both variables in a multivariate 
model where, for example, an estimated positive correlation would 
extrapolate lower densities in areas with few or no sampling data (all 
else being equal). 

An explicit caveat should be made that unlike other fisheries- 
dependent CPUE standardization work (Carruthers et al., 2010, 2011) 
this work does not describe a fully closed simulation, where fishing or 
sampling in this case influences the underlying population dynamics. As 
a result, an implicit assumption is made that sampling or removals from 
the system are too small to impact the overall abundance distribution 
and that localized depletion does not occur. While this assumption may 
be plausible to make in the case of a highly migratory species occupying 
a dynamic pelagic environment such as skipjack tuna, further research 
should be conducted to examine the implications of extending these 
findings in a closed simulation to fisheries and species, such as demersal 
groundfish or reef fish, where localized depletion could be a concern. 

Given the structure of the WCPFC skipjack tuna stock assessment 
(Vincent et al., 2019), the analyses carried out in the present study 
explored estimating abundance indices at a quarterly time step rather 

Fig. 8. Estimated skipjack tuna (Katsuwonus pelamis) relative abundance indices for each of the western and central Pacific Ocean (WCPO) stock assessment regions 
from the Japanese pole-and-line fishery from the ESVC model. Relative nominal catch-per-unit-effort (CPUE) is shown by the black dots. The blue line indicates the 
standardized abundance index, with the shaded region showing the 95% confidence interval. All variables displayed were standardized to a mean of 1 for plotting. 
The ESVC model consisted of the baseline spatio-temporal model described in Section 2.2.2 with a linear effect of sea-surface temperature on skipjack tuna abundance 
and an index of the Niño 4 temperature anomalies included as a spatially-varying coefficient (SVC). 
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than estimating an annual index with the quarterly effect removed via its 
inclusion as a catchability factor in the spatiotemporal model (Grüss 
et al., 2019). In the context of the fishery application considered in the 
present study, additional work is warranted to explore how structured 
seasonal, spatiotemporal models (Thorson et al., 2020a) could result in 
an improved abundance index, especially if the high intra-annual vari-
ation observed in the current study is a product of seasonal specific 
fishing patterns. More generally given the poor performance of models 
in the Fixed scenario considered in this study, which noticeably strug-
gled when a portion of the underlying stock went consistently 
un-sampled, application of a model with structured intra-annual corre-
lation could produce an abundance index with reduced error and 
improved confidence interval coverage. 

As mentioned in Section 3.2, the JPPL abundance index appears to be 
relatively constant over the modeled period and, in model regions that 
are well sampled, it does not deviate greatly from the nominal CPUE. It 
is possible that the standardized abundance index does not vary in 
proportion to the population trend of the target skipjack tuna stock. 
Logbook catch data for the JPPL fishery is recorded as metric tons caught 

per day, without mention of the number of schools encountered and/or 
the size of the schools fished. This format of data reporting could be 
intrinsically hyperstable by inadvertently obscuring potential effects of 
gear/vessel saturation (ArreguinSanchez, 1996; Kuriyama et al., 2019) 
and searching behavior for schools (Gaertner and Dreyfus-Leon, 2004). 
For instance, 10 mt harvested from the edge of a 100 mt school could 
imply something different in terms of the population health than 10 mt 
harvested by completely capturing 5 separate 2 mt schools. Information 
on the search time, school size, number of schools fished per day, or 
school association (i.e. associated with natural floating object or 
fish-aggregating device) could reduce the risk of hyperstability in the 
abundance index. 

The spatial distribution of skipjack tuna is known to be influenced by 
the location of the convergence zone on the eastern extent of the WCPO 
Warm Pool (Lehodey et al., 1997). When the Warm Pool expands during 
“El Niño” phases skipjack tuna typically range further east while they 
tend to remain more concentrated in the equatorial western Pacific 
during “La Niña” phases. Investigation of the spatial distribution of the 
estimated SVC random effects for both encounter-rate and positive 

Fig. 9. Estimated environmental relationship between sea surface temperature (SST) and skipjack tuna (Katsuwonus pelamis) by model component, encounter 
probability and positive catch-rate, for three different standardization models: E, E.Spline, and ESVC. All three models were based off the baseline spatio-temporal 
model described in Section 2.2.2. The E model included a linear effect of sea-surface temperature (SST) on skipjack tuna abundance, the E.Spline model included a 
non-linear effect of SST on abundance as a cubic spline, and the ESVC model added the linear effect of SST and an index of the Niño 4 temperature anomalies included 
as a spatially-varying coefficient (SVC). 
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catch-rate appear to support this temporal pattern. Within the equatorial 
WCPO, positive random effects (indicating a positive correlation with 
“El Niño” phases) are located to the east while negative random effects 
(indicating a positive correlation with La Niña phases) are located to-
wards the west (Fig. 10 bottom-right). Outside of the equatorial WCPO 
and the Warm Pool, there appears to be a strong positive correlation 
with “El Niño” phases in the north-west Pacific Ocean between typical 
locations of the Kuroshio Extension current and the North Equatorial 
current. Though the effect of Southern Oscillation Index phases on 
skipjack distribution and abundance are less well studied outside of the 
equatorial Pacific Ocean, this observation makes sense in the context of 
existing oceanographic research that found that the North Equatorial 
current undergoes a northward shift during “El Niño” phases (Qiu, 
2001). A northern shift of this warm-water current and associated fronts 
could aggregate skipjack forage such as plankton and micronekton in an 
otherwise less productive area and could explain the higher catches and 
encounter-rates seen during “El Niño” phases. 

In the JPPL fisheries application considered in this study (Section 
2.2.2), high catches were recorded at “low” temperatures particularly 
near the Kuroshio Extension current. There are two potential explana-
tions for this observation. The Kuroshio Extension is a highly dynamic 
and productive system (Kimura, 2000), characterized by a meandering 
jet (Mizuno and White, 1983) and warm-core eddies (Yasuda et al., 
1992), where warm, tropical waters shoal above cold, temperate waters 
from the Oyashio Current. If vessels are targeting these mesoscale fea-
tures, it is likely that they are not actually fishing in waters below 18∘C 
and that the “observed” cold temperatures result from a mismatch be-
tween the spatial and temporal resolutions of the fishing sets (daily, 1∘) 
and the SST observations (quarterly, 2∘). Indeed, high resolution (daily, 

1∕12∘) data covering the Kuroshio Extension area from the Japan 
Coastal Ocean Predictability Experiment 2 (JCOPE2; Miyazawa et al., 
2009) showed that quarterly 2∘ cells with average temperatures as low as 
7. 8∘C could still contain viable skipjack tuna habitat. This suggests that 
future research could explore fitting alternative features that arise from 
aggregating high-resolution covariate data (e.g. SST) to the spatial scale 
of the estimation model. Future examples to explore include maximum 
or upper quantile of SST, the area covered by mesoscale eddies, metrics 
of horizontal SST differential or other such features that more accurately 
capture tuna habitat selection than broad-scale average temperature. 
Additionally, Kiyofuji et al. (2019)) showed that the vertical distribution 
of tagged skipjack became shallower within the Kuroshio Extension area 
as a result of thermal compression due to the subsurface cold water mass 
from the Oyashio current. The thermal compression of skipjack in the 
Kuroshio Extension area could make skipjack schools easier to locate, 
and more accessible to the surface-oriented pole-and-line gear resulting 
in larger catches at these “observed” cold temperatures. Future studies 
on this system should try and explicitly account for the effects of thermal 
compression on skipjack tuna catchability. Finally, the biological oper-
ating model (SEAPODYM) includes a bottom-up effect of environmental 
conditions on fish biomass, such that SST (and by extension ENSO) affect 
density in the estimation model. However, as just mentioned, environ-
mental conditions could alternatively affect catchability (e.g., where 
warm water causes a greater overlap in vertical distribution with 
accessibility to pole-and-line fishing), and it typically requires process 
research (focused experiments or complementary sampling methods) to 
identify whether covariates affect catchability or density. We did not 
explore a simulation scenario involving mis-specification (e.g., where a 
covariate affects catchability in the operating model but density in the 

Fig. 10. Estimated spatial and spatially-varying coefficient (SVC) random effects by model component, encounter probability and positive catch-rate, from the ESVC 
model. The ESVC model consisted of the baseline spatio-temporal model described in Section 2.2.2 with a linear effect of sea-surface temperature on skipjack tuna 
abundance and an index of the Niño 4 temperature anomalies included as an SVC. 
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estimation model), and note this as a topic for future research. 
Though the analyses conducted in the present study shows that, in 

certain scenarios, spatiotemporal delta-GLMMs could still be appro-
priate to use for the standardization of fisheries-dependent data, there is 
still opportunity for future research in this area. Recent developments to 
the VAST modeling framework (release number > 3.6.0) have made it 
possible to specify separate catchability and environmental covariates 
for the two different model components of the delta-GLMM: encounter 
probability and positive catch-rate. Taking advantage of this function-
ality and specifying separate covariate structures could remove inad-
vertent model mis-specification caused by differential covariate effects 
between the two model components. Additionally, this paper considered 
a single-species approach to modeling fisheries-dependent data, yet 
spatiotemporal delta-GLMMs can easily be extended to a multi-species 
framework (Thorson, 2017). By explicitly accounting for the covari-
ance between species, there is the potential to improve abundance 
indices in mixed-fisheries by using the abundance of one species to gain 
additional information on the other (Thorson et al., 2016). This should 
be explored in the context of the JPPL fishery as it also opportunistically 
targets schools of north Pacific albacore tuna (Thunnus alalunga) in the 
Kuroshio Extension area (Kimura and Sugimoto, 1997; Kiyofuji, 2013). 
A high-resolution analysis of the catch-rate data partitioned between 
skipjack tuna and albacore tuna could identify trade-offs in the abun-
dance dynamics of the two target species as it relates to phases in Kur-
oshio Extension variability. 
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Conesa, D., 2019. Accounting for preferential sampling in species distribution 
models. Ecol. Evol. 9, 653–663. https://doi.org/10.1002/ece3.4789. 〈http://doi. 
wiley.com/10.1002/ece3.4789〉. 

Qiu, B., 2001. Kuroshio And Oyashio Currents. Encyclopedia of Ocean Sciences. 
Elsevier,, pp. 1413–1425. https://doi.org/10.1006/rwos.2001.0350. 

Quirijns, F., Poos, J., Rijnsdorp, A., 2008. Standardizing commercial CPUE data in 
monitoring stock dynamics: Accounting for targeting behaviour in mixed fisheries. 
Fish. Res. 89, 1–8. https://doi.org/10.1016/j.fishres.2007.08.016. 〈https://linking 
hub.elsevier.com/retrieve/pii/S0165783607002147〉. 

R Core Team, 2021. R: A Language and Environment for Statistical Computing. R 
Foundation for Statistical Computing,, Vienna, Austria. 〈https://www.R-project.org/ 
〉.  

Rose, G.A., Kulka, D.W., 1999. Hyperaggregation of fish and fisheries: how catch-per- 
unit-effort increased as the northern cod (Gadus morhua) declined. ://WOS: 
000085591600011 Can. J. Fish. Aquat. Sci. 56, 118–127. https://doi.org/10.1139/ 
cjfas-56-S1-118. 

Rose, G.A., Leggett, W.C., 1991. Effects of biomass range interactions on catchability of 
migratory demersal fish by mobile fisheries - An example of Atlantic cod (Gadus 
morhua). ://WOS:A1991FP95300013 Can. J. Fish. Aquat. Sci. 48, 843–848. https:// 
doi.org/10.1139/f91-100. 

Rufener, M.-C., Kristensen, K., Nielsen, J.R., Bastardie, F., 2021. Bridging the gap 
between commercial fisheries and survey data to model the spatiotemporal 
dynamics of marine species. Ecol. Appl., N./a, e02453. https://doi.org/10.1002/ 
eap.2453 (arXiv). 〈https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1002/ea 
p.2453〉. 

Senina, I., Lehodey, P., Calmettes, B., Dessert, M., Hampton, J., Smith, N., Gorgues, T., 
Aumont, O., Lengaigne, M., Menkes, C., Nicol, S., & Gehlen, M., (2018). Impact of 
climate change on tropical Pacific tuna and their fisheries in Pacific Islands waters 
and high seas areas. Technical Report WCPFC-SC14–2018/EB-WP-01 Busan, South 
Korea, 8–16 August 2018. 

Senina, I., Lehodey, P., Sibert, J., Hampton, J., 2020. Integrating tagging and fisheries 
data into a spatial population dynamics model to improve its predictive skills. Can. J. 
Fish. Aquat. Sci. 77, 576–593. https://doi.org/10.1139/cjfas-2018-0470. 〈http:// 
www.nrcresearchpress.com/doi/10.1139/cjfas-2018-0470〉. 

Senina, I., Sibert, J., Lehodey, P., 2008. Parameter estimation for basin-scale ecosystem- 
linked population models of large pelagic predators: Application to skipjack tuna. 
Prog. Oceanogr. 78, 319–335. https://doi.org/10.1016/j.pocean.2008.06.003. 〈htt 
ps://linkinghub.elsevier.com/retrieve/pii/S0079661108001171〉. 

Shono, H., & Ogura, M., (2000). The standardized skipjack cpue, including the effect of 
searching devices, of the japanese distant water pole and line fishery in the western 
central pacific ocean. Technical Report Col.Vol.Sci.Pap. ICCAT, 51(1). 

Smith, M.D., Wilen, J.E., 2003. Economic impacts of marine reserves: the importance of 
spatial behavior. ://WOS:000185042100001 J. Environ. Econ. Manag. 46, 183–206. 
https://doi.org/10.1016/s0095-0696(03)00024-x. 

Smith, T., & Reynolds, R., (1981). NOAA Smith and Reynolds Extended Reconstructed 
Sea Surface Temperature (ERSST) Level 4 Monthly Version 5 Dataset in netCDF.1 
0.5067/ERSST-L4N50. 

Stow, C.A., Jolliff, J., McGillicuddy, D.J., Doney, S.C., Allen, J.I., Friedrichs, M.A., 
Rose, K.A., Wallhead, P., 2009. Skill assessment for coupled biological/physical 
models of marine systems. J. Mar. Syst. 76, 4–15. https://doi.org/10.1016/j. 

N.D. Ducharme-Barth et al.                                                                                                                                                                                                                   

https://doi.org/10.1016/j.fishres.2019.01.008
https://linkinghub.elsevier.com/retrieve/pii/S0165783619300086
https://linkinghub.elsevier.com/retrieve/pii/S0165783619300086
https://doi.org/10.1111/fog.12503
https://doi.org/10.1111/fog.12503
https://onlinelibrary.wiley.com/doi/pdf/10.1111/fog.12503
https://onlinelibrary.wiley.com/doi/pdf/10.1111/fog.12503
https://doi.org/10.1139/cjfas-58-9-1760
https://CRAN.R-project.org/package=geosphere
https://CRAN.R-project.org/package=geosphere
https://doi.org/10.1139/f87-163
http://www.nrcresearchpress.com/doi/10.1139/f87-163
http://www.nrcresearchpress.com/doi/10.1139/f87-163
https://doi.org/10.1139/f00-061
http://www.nrcresearchpress.com/doi/10.1139/f00-061
http://www.nrcresearchpress.com/doi/10.1139/f00-061
https://doi.org/10.1016/j.fishres.2016.06.004
https://doi.org/10.1016/j.fishres.2016.06.004
https://linkinghub.elsevier.com/retrieve/pii/S0165783616301928
https://linkinghub.elsevier.com/retrieve/pii/S0165783616301928
https://doi.org/10.1080/01621459.1989.10478825
https://www.tandfonline.com/doi/full/10.1080/01621459.1989.10478825
https://www.tandfonline.com/doi/full/10.1080/01621459.1989.10478825
https://doi.org/10.1006/jmsc.1999.0564
https://doi.org/10.1006/jmsc.1999.0564
https://academic.oup.com/icesjms/article-lookup/doi/10.1006/jmsc.1999.0564
https://academic.oup.com/icesjms/article-lookup/doi/10.1006/jmsc.1999.0564
https://doi.org/10.1046/j.1365-2419.1997.00029.x
http://doi.wiley.com/10.1046/j.1365-2419.1997.00029.x
http://doi.wiley.com/10.1046/j.1365-2419.1997.00029.x
https://doi.org/10.1016/j.pocean.2019.03.006
http://www.sciencedirect.com/science/article/pii/S007966111830185X
http://www.sciencedirect.com/science/article/pii/S007966111830185X
https://doi.org/10.1111/faf.12375
https://onlinelibrary.wiley.com/doi/abs/10.1111/faf.12375
https://onlinelibrary.wiley.com/doi/abs/10.1111/faf.12375
https://doi.org/10.1139/cjfas-2017-0286
https://doi.org/10.1139/cjfas-2017-0286
http://www.nrcresearchpress.com/doi/10.1139/cjfas-2017-0286
http://www.nrcresearchpress.com/doi/10.1139/cjfas-2017-0286
https://doi.org/10.1038/39575
https://doi.org/10.1038/39575
http://www.nature.com/articles/39575
https://doi.org/10.1002/9781119548164.ch19
https://AGUpubs.onlinelibrary.wiley.com/doi/pdf/10.1002/9781119548164.ch19
https://AGUpubs.onlinelibrary.wiley.com/doi/pdf/10.1002/9781119548164.ch19
https://doi.org/10.1016/j.pocean.2008.06.004
https://linkinghub.elsevier.com/retrieve/pii/S007966110800116X
https://linkinghub.elsevier.com/retrieve/pii/S007966110800116X
https://doi.org/10.1139/f92-278
https://doi.org/10.1016/j.fishres.2012.02.005
https://doi.org/10.1016/j.fishres.2004.08.002
https://doi.org/10.1016/j.fishres.2004.08.002
https://doi.org/10.1016/j.fishres.2020.105594
https://linkinghub.elsevier.com/retrieve/pii/S0165783620301119
https://linkinghub.elsevier.com/retrieve/pii/S0165783620301119
https://doi.org/10.1007/s10872-009-0063-3
http://link.springer.com/10.1007/s10872-009-0063-3
http://link.springer.com/10.1007/s10872-009-0063-3
http://refhub.elsevier.com/S0165-7836(21)00297-6/sbref43
http://refhub.elsevier.com/S0165-7836(21)00297-6/sbref43
https://doi.org/10.1016/j.fishres.2020.105525
https://linkinghub.elsevier.com/retrieve/pii/S0165783620300424
https://linkinghub.elsevier.com/retrieve/pii/S0165783620300424
http://refhub.elsevier.com/S0165-7836(21)00297-6/sbref45
http://refhub.elsevier.com/S0165-7836(21)00297-6/sbref45
http://refhub.elsevier.com/S0165-7836(21)00297-6/sbref45
https://doi.org/10.1002/ece3.4789
http://doi.wiley.com/10.1002/ece3.4789
http://doi.wiley.com/10.1002/ece3.4789
https://doi.org/10.1006/rwos.2001.0350
https://doi.org/10.1016/j.fishres.2007.08.016
https://linkinghub.elsevier.com/retrieve/pii/S0165783607002147
https://linkinghub.elsevier.com/retrieve/pii/S0165783607002147
http://refhub.elsevier.com/S0165-7836(21)00297-6/sbref49
http://refhub.elsevier.com/S0165-7836(21)00297-6/sbref49
http://refhub.elsevier.com/S0165-7836(21)00297-6/sbref49
https://doi.org/10.1139/cjfas-56-S1-118
https://doi.org/10.1139/cjfas-56-S1-118
https://doi.org/10.1139/f91-100
https://doi.org/10.1139/f91-100
https://doi.org/10.1002/eap.2453
https://doi.org/10.1002/eap.2453
https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1002/eap.2453
https://esajournals.onlinelibrary.wiley.com/doi/pdf/10.1002/eap.2453
https://doi.org/10.1139/cjfas-2018-0470
http://www.nrcresearchpress.com/doi/10.1139/cjfas-2018-0470
http://www.nrcresearchpress.com/doi/10.1139/cjfas-2018-0470
https://doi.org/10.1016/j.pocean.2008.06.003
https://linkinghub.elsevier.com/retrieve/pii/S0079661108001171
https://linkinghub.elsevier.com/retrieve/pii/S0079661108001171
https://doi.org/10.1016/s0095-0696(03)00024-x
https://doi.org/10.5067/ERSST-L4N50
https://doi.org/10.5067/ERSST-L4N50
https://doi.org/10.1016/j.jmarsys.2008.03.011


Fisheries Research 246 (2022) 106169

20

jmarsys.2008.03.011. 〈https://linkinghub.elsevier.com/retrieve/pii/S092479630 
8001103〉. 

Swain, D.P., Sinclair, A.F., 1994. Fish Distribution and catchability - What is the 
appropriate measure of distribution. ://WOS:A1994PA36700006 Can. J. Fish. 
Aquat. Sci. 51, 1046–1054. https://doi.org/10.1139/f94-104. 

Thorson, J.T., 2019a. Guidance for decisions using the Vector Autoregressive Spatio- 
Temporal (VAST) package in stock, ecosystem, habitat and climate assessments. 
Fish. Res. 210, 143–161. https://doi.org/10.1016/j.fishres.2018.10.013. 
〈http://www.sciencedirect.com/science/article/pii/S0165783618302820〉. 

Thorson, J.T., 2019b. Measuring the impact of oceanographic indices on species 
distribution shifts: The spatially varying effect of cold-pool extent in the eastern 
Bering Sea. Limnol. Oceanogr. 64, 2632–2645. https://doi.org/10.1002/lno.11238. 
〈https://onlinelibrary.wiley.com/doi/abs/10.1002/lno.11238〉. 

Thorson, J.T., Adams, C.F., Brooks, E.N., Eisner, L.B., Kimmel, D.G., Legault, C.M., 
Rogers, L.A., Yasumiishi, E.M., 2020a. Seasonal and interannual variation in spatio- 
temporal models for index standardization and phenology studies. ICES J. Mar. Sci. 
77, 1879–1892. https://doi.org/10.1093/icesjms/fsaa074. 〈https://academic.oup. 
com/icesjms/article/77/5/1879/5837191〉. 

Thorson, J.T., Barnett, L.A.K., 2017. Comparing estimates of abundance trends and 
distribution shifts using single- and multispecies models of fishes and biogenic 
habitat. ICES J. Mar. Sci. 1311–1321. https://doi.org/10.1093/icesjms/fsw193. 

Thorson, J.T., Fonner, R., Haltuch, M.A., Ono, K., Winker, H., 2016. Accounting for 
spatiotemporal variation and fisher targeting when estimating abundance from 
multispecies fishery data. Canadian. J. Fish. Aquat. Sci. 1794–1807. https://doi.org/ 
10.1139/cjfas-2015-0598. 

Thorson, J.T., Kristensen, K., 2016. Implementing a generic method for bias correction in 
statistical models using random effects, with spatial and population dynamics 
examples. Fish. Res. 175, 66–74. https://doi.org/10.1016/j.fishres.2015.11.016. 
〈https://linkinghub.elsevier.com/retrieve/pii/S0165783615301399〉. 

Thorson, J.T., Maunder, M.N., Punt, E., 2020b. The development of spatio-temporal 
models of fishery catch-per-unit-effort data to derive indices of relative abundance. 
Fish. Res. 230, 105611 https://doi.org/10.1016/j.fishres.2020.105611. 〈https://lin 
kinghub.elsevier.com/retrieve/pii/S0165783620301284〉. 

Thorson, J.T., Shelton, A.O., Ward, E.J., Skaug, H.J., 2015. Geostatistical delta- 
generalized linear mixed models improve precision for estimated abundance indices 
for West Coast groundfishes. ://WOS:000356233800006 Ices J. Mar. Sci. 72, 
1297–1310. https://doi.org/10.1093/icesjms/fsu243. 

Tobler, W.R., 1970. A Computer Movie Simulating Urban Growth in the Detroit Region. 
Econ. Geogr. 46, 234. https://doi.org/10.2307/143141. 〈https://www.jstor.org 
/stable/143141?origin=crossref〉. 

Vidal, T., Hamer, P., Escalle, L., & Pilling, G., (2020). Assessing trends in skipjack tuna 
abundance from purse seine catch and effort data in the WCPO. Technical Report 
WCPFC-SC16–2020/SA-IP-09. 

Vidal, T., Muller, B., & Pilling, G., (2019a). Tropical WCPO purse seine effort creep 
indicators. Technical Report WCPFC-SC15–2019/MI-IP-05 Pohnpei, Federated 
States of Micronesia. 

Vidal, T., Pilling, G., Tremblay-Boyer, L., & Usu, T., (2019b).Standardized CPUE for 
skipjack tuna Katsuwonus pelamis from the Papua New Guinea archipelagic purse 
seine fishery. Technical Report WCPFC-SC15–2019/SA-IP-05 Pohnpei, Federated 
States of Micronesia. 

Vincent, M., Pilling, G., & Hampton, J., (2019). Stock assessment of skipjack tuna in the 
WCPO. Technical Report WCPFC-SC15–2019/SA-WP-05 Pohnpei, Federated States 
of Micronesia. 

Walter, J.F., Hoenig, J.M., Christman, M.C., 2014a. Reducing Bias and Filling in Spatial 
Gaps in Fishery-Dependent Catch-per-Unit-Effort Data by Geostatistical Prediction, I. 
Methodology and Simulation. ://WOS:000348391600003 North Am. J. Fish. Manag. 
34, 1095–1107. https://doi.org/10.1080/02755947.2014.932865. 

Walter, J.F., Hoenig, J.M., Christman, M.C., 2014b. Reducing Bias and Filling in Spatial 
Gaps in Fishery-Dependent Catch-per-Unit-Effort Data by Geostatistical Prediction, 
II. Application to a Scallop Fishery. ://WOS:000348391600004 North Am. J. Fish. 
Manag. 34, 1108–1118. https://doi.org/10.1080/02755947.2014.932866. 

Walters, C., 2003. Folly and fantasy in the analysis of spatial catch rate data. ://WOS: 
000188752800001 Can. J. Fish. Aquat. Sci. 60, 1433–1436. https://doi.org/ 
10.1139/f03-152. 

Wilberg, M.J., Thorson, J.T., Linton, B.C., Berkson, J., 2009. Incorporating time-varying 
catchability into population dynamic stock assessment models (Incorporating Time- 
Varying Catchability into Population Dynamic Stock Assessment Models). Rev. Fish. 
Sci. 18, 7–24. https://doi.org/10.1080/10641260903294647. 〈https://www.tan 
dfonline.com/doi/full/10.1080/10641260903294647〉. 

Wilen, J.E., 2004. Spatial management of fisheries. Mar. Resour. Econ. 19, 7–19. 
Williams, P., Reid, C., & Ruaia, T., 2020. Overview of tuna fisheries in the WCPO, 

including economic conditions - 2019. Technical Report WCPFC-SC16–2020/GN-IP- 
01. 

Xu, H., Lennert-Cody, C.E., Maunder, M.N., Minte-Vera, C.V., 2019. Spatiotemporal 
dynamics of the dolphin-associated purse-seine fishery for yellowfin tuna (Thunnus 
albacares) in the eastern Pacific Ocean. Fish. Res. 213, 121–131. https://doi.org/ 
10.1016/j.fishres.2019.01.013. 〈https://linkinghub.elsevier.com/retrieve/pii/S01 
6578361930013X〉. 

Yasuda, I., Okuda, K., Hirai, M., 1992. Evolution of a Kuroshio warm-core 
ring–variability of the hydrographic structure. Deep Sea Res. Part A. Oceanogr. Res. 
Pap. 39, S131–S161. https://doi.org/10.1016/S0198-0149(11)80009-9. 〈https://lin 
kinghub.elsevier.com/retrieve/pii/S0198014911800099〉. 

Ye, Y.M., Dennis, D., 2009. How reliable are the abundance indices derived from 
commercial catch-effort standardization? ://WOS:000267874300013 Can. J. Fish. 
Aquat. Sci. 66, 1169–1178. https://doi.org/10.1139/f09-070. 

Zhou, S., Campbell, R.A., Hoyle, S.D., 2019. Catch per unit effort standardization using 
spatio-temporal models for Australia’s Eastern Tuna and Billfish Fishery. ICES J. 
Mar. Sci. https://doi.org/10.1093/icesjms/fsz034. 〈https://academic.oup.com/icesj 
ms/advance-article/doi/10.1093/icesjms/fsz034/5374756〉. 

N.D. Ducharme-Barth et al.                                                                                                                                                                                                                   

https://doi.org/10.1016/j.jmarsys.2008.03.011
https://linkinghub.elsevier.com/retrieve/pii/S0924796308001103
https://linkinghub.elsevier.com/retrieve/pii/S0924796308001103
https://doi.org/10.1139/f94-104
https://doi.org/10.1016/j.fishres.2018.10.013
http://www.sciencedirect.com/science/article/pii/S0165783618302820
https://doi.org/10.1002/lno.11238
https://onlinelibrary.wiley.com/doi/abs/10.1002/lno.11238
https://doi.org/10.1093/icesjms/fsaa074
https://academic.oup.com/icesjms/article/77/5/1879/5837191
https://academic.oup.com/icesjms/article/77/5/1879/5837191
https://doi.org/10.1093/icesjms/fsw193
https://doi.org/10.1139/cjfas-2015-0598
https://doi.org/10.1139/cjfas-2015-0598
https://doi.org/10.1016/j.fishres.2015.11.016
https://linkinghub.elsevier.com/retrieve/pii/S0165783615301399
https://doi.org/10.1016/j.fishres.2020.105611
https://linkinghub.elsevier.com/retrieve/pii/S0165783620301284
https://linkinghub.elsevier.com/retrieve/pii/S0165783620301284
https://doi.org/10.1093/icesjms/fsu243
https://doi.org/10.2307/143141
https://www.jstor.org/stable/143141?origin=crossref
https://www.jstor.org/stable/143141?origin=crossref
https://doi.org/10.1080/02755947.2014.932865
https://doi.org/10.1080/02755947.2014.932866
https://doi.org/10.1139/f03-152
https://doi.org/10.1139/f03-152
https://doi.org/10.1080/10641260903294647
https://www.tandfonline.com/doi/full/10.1080/10641260903294647
https://www.tandfonline.com/doi/full/10.1080/10641260903294647
http://refhub.elsevier.com/S0165-7836(21)00297-6/sbref71
https://doi.org/10.1016/j.fishres.2019.01.013
https://doi.org/10.1016/j.fishres.2019.01.013
https://linkinghub.elsevier.com/retrieve/pii/S016578361930013X
https://linkinghub.elsevier.com/retrieve/pii/S016578361930013X
https://doi.org/10.1016/S0198-0149(11)80009-9
https://linkinghub.elsevier.com/retrieve/pii/S0198014911800099
https://linkinghub.elsevier.com/retrieve/pii/S0198014911800099
https://doi.org/10.1139/f09-070
https://doi.org/10.1093/icesjms/fsz034
https://academic.oup.com/icesjms/advance-article/doi/10.1093/icesjms/fsz034/5374756
https://academic.oup.com/icesjms/advance-article/doi/10.1093/icesjms/fsz034/5374756

	Impacts of fisheries-dependent spatial sampling patterns on catch-per-unit-effort standardization: A simulation study and f ...
	1 Introduction
	2 Methods
	2.1 Simulation
	2.1.1 Spatial sampling patterns
	2.1.2 Including catchability effects
	2.1.3 Sampling sensitivity
	2.1.4 Estimating indices
	2.1.5 Model Performance

	2.2 Fishery application
	2.2.1 Description
	2.2.2 Estimating indices


	3 Results
	3.1 Simulation
	3.1.1 Sampling sensitivity

	3.2 Fisheries application

	4 Discussion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Supporting information
	References


